1.7: Two- & Three-Digit Multipliers
https://opentextbc.ca/alfm3/ – From Book 3, Unit 1: Multiplication, include Topics B, C, D. Do not include the Unit 1 Review. From Unit 2: Division, include Topics B, C, D, E, F. Do not include Unit 2 Review.
When the multiplier is more than one digit, you use the same process and get partial products. You repeat the steps until you have multiplied by every digit, then add the partial products together.
Multiplying by Two-Digit Multipliers
Example A
[latex]24\times23=[/latex]
Step 1: Multiply by the ones digit in the multiplier.
Multiply 3 ones by 24 using the method you already know. The first partial product is 72.
[latex]\begin{array}{rr}&_1\hspace{0.5em}\\&24\\\times&23\\\hline&72\end{array}[/latex]
Step 2: Multiply by the tens digit in the multiplier.
First, put a 0 to hold the ones place in your partial product. We are multiplying by a ten, so we hold the ones place.
[latex]2 \text{ tens }\times 4 \text{ ones }= 8 \text{ tens}[/latex]
Write the 8 tens under the tens in your first partial product. It is very important to keep the columns straight — ones under one, tens under tens.
[latex]2 \text{ tens }\times 2 \text{ tens }= 4 \text{ hundreds}[/latex]
Write the 4 hundreds in your partial product. The second partial product is 480.
[latex]\begin{array}{rr}&_1\hspace{0.5em}\\&24\\\times&23\\\hline&72\\&480\end{array}[/latex]
Step 3: Add the partial products together, being sure to add ones to ones, tens to tens, hundreds to hundreds. The sum is the final product.
Draw a line under the partial products. Add. Check your addition.
[latex]\begin{array}{rr}&_1\hspace{0.5em}\\&24\\\times&23\\\hline&72\\+&480\\\hline&552\end{array}[/latex]
Example B
[latex]36\times425=[/latex]
Step 1: Multiply by the ones digit in the multiplier.
[latex]6 × 425 = 2\,550[/latex]
[latex]\begin{array}{rr}&_1\hspace{0.15em}_3\hspace{0.5em}\\&425\\\times&36\\\hline&2550\end{array}[/latex]
Step 2: Multiply by the tens digit in the multiplier. First put a 0 to hold the ones place in the second partial product.
[latex]3 \text{ tens} \times 5 \text{ tens} = 15 \text{ tens} = 1 \text{ hundred and } 5 \text{ tens}[/latex]
Write the 5 tens in the second partial product and carry the 1 hundred.
Now, you can see why it is best to cross out the numbers you carry as soon as you have added them to the product.
[latex]3 \text{ tens} \times 2 \text{ tens} = 6 \text{ hundreds}[/latex]
[latex]6 \text{ hundreds} + 1 \text{ hundred (carried) } = 7 \text{ hundreds}[/latex]
There is nothing to carry.
[latex]3 \text{ tens} × 4 \text{ hundreds} = 12 \text{ thousands}[/latex]
[latex]\begin{array}{rr}&_1\hspace{0.5em}\\&_1\hspace{0.15em}_3\hspace{0.5em}\\&425\\\times&36\\\hline&2550\\&12750\end{array}[/latex]
Step 3: Add the partial products together.
[latex]\begin{array}{rr}&_1\hspace{0.5em}\\&_1\hspace{0.15em}_3\hspace{0.5em}\\&425\\\times&36\\\hline&2550\\+&12750\\\hline&15300\end{array}[/latex]
Multiplication Tips
Here are some tips to keep in mind while multiplying:
- Keeping the columns straight with ones under ones, tens under tens, and hundreds under hundreds is very important. Working on large-squared graphing paper using one digit per square is often helpful.
- tens × tens = hundreds
tens × hundreds = thousands
Exercise 1
Multiply, being very careful to keep the columns straight when you write your partial products. Check your work using the answer key at the end of the exercise.
Example: [latex]\begin{array}{rr}&84\\\times&12\\\hline&168\\+&840\\\hline&1008\end{array}[/latex]
- [latex]\begin{array}{rr}&73\\\times&12\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&50\\\times&42\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&62\\\times&31\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&61\\\times&42\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&91\\\times&53\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&92\\\times&31\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&91\\\times&49\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&72\\\times&48\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&53\\\times&30\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&41\\\times&53\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&42\\\times&94\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&80\\\times&86\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&31\\\times&79\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&54\\\times&40\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&61\\\times&48\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&60\\\times&31\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&55\\\times&73\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&84\\\times&56\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&53\\\times&38\\\hline\\\end{array}[/latex]
Exercise 1 Answers
- 876
- 2100
- 1922
- 2562
- 4823
- 2852
- 4459
- 3456
- 1590
- 2173
- 3948
- 6880
- 2449
- 2160
- 2928
- 1860
- 4015
- 4704
- 2014
When the multiplier has a zero in the ones place, use the following shortcut.
Example C
[latex]\begin{array}{rr}&48\\\times&80\\\hline&\end{array}[/latex]
Step 1: Place one zero in the product, which will hold the ones place.
[latex]0 \text{ ones} \times 48 = 0[/latex]
Step 2: Multiply by the tens digit and write the product beside the zero.
[latex]\begin{array}{rr}&48\\\times&80\\\hline&3840\end{array}[/latex]
Example D
[latex]\begin{array}{rr}&97\\\times&20\\\hline&1940\end{array}[/latex]
Exercise 2
Find the products. Use the shortcut for multipliers with a zero in them.
Example: [latex]\begin{array}{rr}&76\\\times&70\\\hline&5320\end{array}[/latex]
- [latex]\begin{array}{rr}&52\\\times&70\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&91\\\times&70\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&83\\\times&70\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&49\\\times&70\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&61\\\times&70\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&16\\\times&70\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&36\\\times&70\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&398\\\times&70\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&432\\\times&70\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&863\\\times&70\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&907\\\times&70\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&503\\\times&70\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&452\\\times&70\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&943\\\times&70\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&248\\\times&70\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&6287\\\times&70\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&9025\\\times&70\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&8907\\\times&70\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&300\\\times&70\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&9075\\\times&70\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&3952\\\times&70\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&1528\\\times&70\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&7106\\\times&70\\\hline\\\end{array}[/latex]
Exercise 2 Answers
- 520
- 3640
- 4980
- 2450
- 1830
- 1440
- 2880
- 3980
- 8640
- 43150
- 27210
- 20120
- 36160
- 66010
- 22320
- 251480
- 541500
- 712560
- 27000
- 181500
- 118560
- 106960
- 71060
Multiplying by Three-Digit Multipliers
To multiply by three-digit multipliers, use the same method with one more part.
Example E
[latex]417\times368=[/latex]
[latex]\begin{array}{rr}&417\\\times&368\\\hline&3336\\&25020\\+&125100\\\hline&153456\end{array}[/latex]
Step 1: Multiply by the 8 ones.
Step 2: Multiply the 6 tens; hold the ones place with 0.
Step 3: Multiply by the 3 hundreds. Put 00 to hold the ones and tens places in the third partial product.
[latex]3 \text{ hundreds} \times 7 \text{ ones} = 21 \text{ hundreds} = 2 \text{ thousands and } 1 \text{ hundred}[/latex]
Write the 1 hundred and carry the 2 thousands.
[latex]3 \text{ hundreds} \times 1 \text{ ten} = 3 \text{ thousands}[/latex]
[latex]3 \text{ thousands} \times 2 \text{ thousands (carried) } = 5 \text{ thousands}[/latex]
[latex]3 \text{ hundreds} \times 4 \text{ hundreds} = 12 ten \text{ thousands}[/latex]
Step 4: Add the partial products.
Exercise 3
Find the products.
- [latex]\begin{array}{rr}&416\\\times&213\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&375\\\times&291\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&361\\\times&475\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&275\\\times&863\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&984\\\times&469\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&489\\\times&578\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&498\\\times&123\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&267\\\times&854\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&613\\\times&368\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&725\\\times&547\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&269\\\times&912\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&752\\\times&697\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&983\\\times&357\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&835\\\times&148\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&386\\\times&296\\\hline\\\end{array}[/latex]
Exercise 3 Answers
- 88608
- 109125
- 171475
- 237325
- 461496
- 282642
- 61254
- 228018
- 225584
- 396575
- 245328
- 524144
- 350931
- 123580
- 114256
You know to hold the ones place with a zero if the multiplier has a zero in the ones place. Use the same skill if the multiplier has a zero in the tens place.
Example F
[latex]927\times405=[/latex]
[latex]\begin{array}{rr}&927\\\times&405\\\hline&4635\\+&370800\\\hline&375435\end{array}[/latex]
Step 1: Multiply by the 5 ones.
Step 2: Multiply by the 0 tens.
Hold the ones place with a 0.
[latex]0 \times 927 = 0[/latex]
Place one zero in the tens place in the second partial product.
Step 3: Multiply by the 4 hundreds. The ones and tens places are already held by zeros. Start this partial product in the hundreds place on the same line.
Step 4: Add the partial products.
Exercise 4
Find the products.
Example: [latex]\begin{array}{rr}&_2\hspace{0.15em}_2\hspace{0.5em}\\&698\\\times&301\\\hline&698\\+&209400\\\hline&210098\end{array}[/latex]
- [latex]\begin{array}{rr}&923\\\times&403\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&830\\\times&108\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&482\\\times&206\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&432\\\times&205\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&625\\\times&405\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&275\\\times&306\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&765\\\times&506\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&1576\\\times&702\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&432\\\times&405\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&625\\\times&409\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&175\\\times&306\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&5874\\\times&309\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&7384\\\times&104\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&6538\\\times&603\\\hline\\\end{array}[/latex]
Exercise 4 Answers
- 371969
- 89640
- 99292
- 88560
- 255625
- 84150
- 387090
- 1106352
- 174960
- 255625
- 53550
- 1815066
- 767936
- 3942414
Multiplying by 10, 100, & 1000
Exercise 5
Do the following questions and see if you can find the pattern.
- [latex]\begin{array}{rr}&83\\\times&10\\\hline&830\end{array}[/latex]
- [latex]\begin{array}{rr}&46\\\times&10\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&97\\\times&10\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&123\\\times&10\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&70\\\times&10\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&129\\\times&10\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&1852\\\times&10\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&29871\\\times&10\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&45\\\times&100\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&26\\\times&100\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&432\\\times&100\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&679\\\times&100\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&2482\\\times&100\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&9037\\\times&100\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&46207\\\times&100\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&97512\\\times&100\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&23\\\times&1000\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&452\\\times&1000\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&207\\\times&1000\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&348\\\times&1000\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&2118\\\times&1000\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&2431\\\times&1000\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&23681\\\times&1000\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&48203\\\times&1000\\\hline\\\end{array}[/latex]
Exercise 5 Answers
- 830
- 460
- 970
- 1230
- 700
- 1290
- 18520
- 298710
- 4500
- 2600
- 43200
- 67900
- 248200
- 903700
- 4620700
- 9751200
- 23000
- 452000
- 207000
- 348000
- 2118000
- 2431000
- 23681000
- 48203000
The pattern is:
When multiplying by 10, 100, 1000, 10000, and so on, place as many zeros to the right of the number as there are zeros in the 10, 100, 1000, etc.
- To multiply by 10, put one zero after the number.
- To multiply by 100, put two zeros after the number.
- To multiply by 1000, put three zeros after the number.
Exercise 6
Find the products using the short method. Do not rewrite the questions.
- [latex]12 \times 10 = 120[/latex]
- [latex]10 \times 3175 =[/latex]
- [latex]162 \times 10 =[/latex]
- [latex]10 \times 53821 =[/latex]
- [latex]10 \times 123 =[/latex]
- [latex]27342 \times 10 =[/latex]
- [latex]10 \times 98 =[/latex]
- [latex]1134 \times 10 =[/latex]
- [latex]15 \times 100 =[/latex]
- [latex]100 \times 278 =[/latex]
- [latex]9134 \times 100 =[/latex]
- [latex]651 \times 100 =[/latex]
- [latex]100 \times 5169 =[/latex]
- [latex]100 \times 24815 =[/latex]
- [latex]10 \times 905 =[/latex]
- [latex]45683 \times 10 =[/latex]
- [latex]1000 \times 87 =[/latex]
- [latex]521 \times 1000 =[/latex]
- [latex]1000 \times 68935 =[/latex]
- [latex]1000 \times 8902 =[/latex]
- [latex]1576 \times 1000 =[/latex]
- [latex]31584 \times 1000 =[/latex]
- [latex]1000 \times 426 =[/latex]
- [latex]72 \times 1000 =[/latex]
Exercise 6 Answers
- 120
- 31750
- 1620
- 538210
- 1230
- 273420
- 980
- 11340
- 1500
- 27800
- 913400
- 65100
- 516900
- 2481500
- 9050
- 456830
- 87000
- 521000
- 68935000
- 8902000
- 1576000
- 31584000
- 426000
- 72000
1.7: Practice Questions
- Multiply these numbers.
- [latex]\begin{array}{rr}&47\\\times&39\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&58\\\times&93\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&48\\\times&100\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&982\\\times&1000\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&678\\\times&39\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&4579\\\times&86\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&8703\\\times&93\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&7390\\\times&85\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&8047\\\times&236\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&4238\\\times&197\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&8200\\\times&444\\\hline\\\end{array}[/latex]
- [latex]\begin{array}{rr}&7265\\\times&409\\\hline\\\end{array}[/latex]
1.7: Practice Answers
- Multiply these numbers.
- 1833
- 5394
- 4800
- 982000
- 26442
- 393794
- 809379
- 628150
- 1899092
- 834886
- 3640800
- 3012285
Attribution
This chapter has been adapted from Topic B: Two- and Three-Digit Multipliers in Adult Literacy Fundamental Mathematics: Book 3 – 2nd Edition (BCcampus) by Wendy Tagami and Liz Girard (2023), which is under a CC BY 4.0 license.