3.6: Equivalent Fractions Review
- Find all the factors for each number. If a number is a prime number, write “prime” next to it.
- 4
- 10
- 21
- 6
- 2
- 16
- Find the factors, common factors and the Greatest Common Factor (GCF) (fill in Table 3.6.1).
Table 3.6.1: Question 2 Fill in the Table Fraction Factors Common Factors GCF [latex]\dfrac{2}{8}[/latex] [latex]\dfrac{8}{16}[/latex] [latex]\dfrac{24}{32}[/latex] [latex]\dfrac{9}{12}[/latex] [latex]\dfrac{5}{15}[/latex] [latex]\dfrac{25}{30}[/latex] [latex]\dfrac{4}{12}[/latex] - Express each fraction in lowest terms. Remember: be sure to write the greatest common factor (GCF) you are dividing with.
- [latex]\dfrac{6}{9}[/latex] =
- [latex]\dfrac{6}{18}[/latex] =
- [latex]\dfrac{12}{28}[/latex] =
- [latex]\dfrac{15}{30}[/latex] =
- [latex]\dfrac{4}{24}[/latex] =
- [latex]\dfrac{10}{18}[/latex] =
- Circle the fractions that are in lowest terms.
- [latex]\dfrac{1}{2}[/latex]
- [latex]\dfrac{3}{6}[/latex]
- [latex]\dfrac{4}{5}[/latex]
- [latex]\dfrac{3}{9}[/latex]
- [latex]\dfrac{4}{8}[/latex]
- [latex]\dfrac{5}{10}[/latex]
- Find all the fractions that are not already in lowest terms and reduce them. Write “lowest terms” next to those already reduced.
- [latex]\dfrac{4}{8}[/latex] =
- [latex]\dfrac{2}{5}[/latex] =
- [latex]\dfrac{8}{12}[/latex] =
- [latex]\dfrac{15}{35}[/latex] =
- [latex]\dfrac{42}{80}[/latex] =
- [latex]\dfrac{6}{36}[/latex] =
- [latex]\dfrac{9}{15}[/latex] =
- State if each pair of fractions is equivalent (=) or not equivalent (≠).
- [latex]\dfrac{4}{5}[/latex] [latex]\dfrac{7}{8}[/latex]
- [latex]\dfrac{10}{12}[/latex] [latex]\dfrac{5}{6}[/latex]
- [latex]\dfrac{5}{15}[/latex] [latex]\dfrac{1}{3}[/latex]
- [latex]\dfrac{6}{7}[/latex] [latex]\dfrac{36}{41}[/latex]
- [latex]\dfrac{3}{5}[/latex] [latex]\dfrac{15}{25}[/latex]
- Round to the nearest whole number.
- [latex]1\dfrac{1}{4}[/latex] =
- [latex]4\dfrac{3}{4}[/latex] =
- [latex]6\dfrac{4}{5}[/latex] =
- [latex]3\dfrac{1}{4}[/latex] =
- [latex]12\dfrac{8}{9}[/latex] =
3.6: Review Answers
- Find all the factors for each number.
- 1,2,4
- 1,2,5,10
- 1,3,7,21
- 1,2,3,6
- 1,2, prime
- 1,2,4,8,16
- Find the factors, common factors and the GCF (see Table 3.6.2).
Table 3.6.2: Question 2 Answwers Fraction Factors Common Factors GCF [latex]\dfrac{2}{8}[/latex] 1,2
1,2,4,81,2 2 [latex]\dfrac{8}{16}[/latex] 1,2,4,8
1,2,4,8,162,4,8 8 [latex]\dfrac{24}{32}[/latex] 1,2,3,4,6,8,12,24
1,2,4,8,16,322,4,8 8 [latex]\dfrac{9}{12}[/latex] 1,3,9
1,2,3,4,6,123 3 [latex]\dfrac{5}{15}[/latex] 1,5
1,3,5,155 5 [latex]\dfrac{25}{30}[/latex] 1,5,25
1,2,3,5,6,10,15,305 5 [latex]\dfrac{4}{12}[/latex] 1,2,4
1,2,3,4,6,1224 4 - Express each fraction in lowest terms.
- [latex]\dfrac{2}{3}[/latex]
- [latex]\dfrac{1}{3}[/latex]
- [latex]\dfrac{3}{7}[/latex]
- [latex]\dfrac{1}{2}[/latex]
- [latex]\dfrac{1}{6}[/latex]
- [latex]\dfrac{7}{8}[/latex]
- [latex]\dfrac{5}{9}[/latex]
- Circle the fractions that are in lowest terms.
- [latex]\dfrac{1}{2}[/latex]
- [latex]\dfrac{4}{5}[/latex]
- Find all the fractions that are not already in lowest terms and reduce them.
- [latex]\dfrac{1}{2}[/latex]
- lowest terms
- [latex]\dfrac{2}{3}[/latex]
- lowest terms
- [latex]\dfrac{(3)}{(7)}[/latex]
- [latex]\dfrac{21}{40}[/latex]
- [latex]\dfrac{1}{6}[/latex]
- [latex]\dfrac{3}{5}[/latex]
- State if each pair of fractions is equivalent (=) or not equivalent (≠).
- ≠
- =
- =
- ≠
- =
- Round to the nearest whole number.
- 1
- 5
- 7
- 3
- 13
Attribution
This chapter has been adapted from Unit 2 Review in Adult Literacy Fundamental Mathematics: Book 5 – 2nd Edition (BCcampus) by Liz Girard, Wendy Tagami, and Leanne Caillier-Smith (2023), which is under a CC BY 4.0 license.